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The long-range goal of this project is to develop ultra-sensitive SERS (Surface-

Enhanced Raman Spectroscopy) probes with reproducible enhancement factors.  To 

achieve this goal, we suggest impedance matched optical antennas with ultra-small mode 

volume (uniform sub-10 nm gap) on metal ground plane for maximum field enhancement.  

 

For theoretical understanding, the field enhancement of an optical antenna at 

resonance has been derived using coupled mode theory (CMT) as: 

 

 (1) 

where Eloc and Ei are the local field amplitude at the high field region of an optical 

antenna and the field amplitude of incoming excitation beam, respectively, Veff is the 

effective mode volume of the resonator, and Ac is the maximum effective aperture of the 

antenna which is determined by spatial mode matching between the antenna radiation 

pattern and the excitation beam pattern. The antenna’s total quality factor (Q) is the 

summation of radiation quality factor (Qrad) and absorption quality factor (Qabs): 

. This equation gives an intuitive picture that the field enhancement 

of an optical antenna is proportional to two important factors: antenna efficiency (Q/Qrad) 

and Purcell enhancement factor
19

 (Q/Veff). Using the equation for the field enhancement, 

there are two main parameters that can be optimized to achieve maximum field 

enhancement: 1) The maximum field enhancement condition is achieved when Qrad 

becomes equal to Qabs (Qrad =Qabs). 2) The effective mode volume of the antenna (Veff) 

needs to be reduced, which can be achieved by shrinking the size of antenna feed gap. 

 

At the end of Phase II, we had demonstrated dipole antenna array controlling 

radiation resistance by the thickness of dielectric spacer layer between antenna and 

ground plane, enabling impedance matching for maximum power transfer.  The measured 

maximum SERS enhancement using trans-1,2-two (4-pyridyl) ethylene (BPE) as the 

target molecule at optimum impedance matching condition was 1.14×10
9
. However, the 

dipole antenna fabricated using conventional e-beam lithography has a technical limit, 

which makes it difficult to reduce the antenna gap below 10 nm. In Phase 3, we focused 

on the development of manufacturable optical antennas with higher enhancement factors. 

We have investigated two antenna structures whose gaps (< 5 nm) can be precisely 

defined by a thin dielectric layer rather than by electron-beam lithography, which has 

poor uniformity and reproducibility. The first structure is optical patch antenna (Fig. 1). It 
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consists of a nanopatch on top of a ground plane. High field is concentrated in the 2nm 

gap between the patch and the ground plane. The gap spacing is precisely controlled by 

atomic layer deposition (ALD). The measured SERS intensity is 6x better than our Phase 

2 antenna (EF ~ 7x10
9
). The patch antenna, however, has poor radiation efficiency as we 

reduce the gap to nanometer scale as the image currents in ground plane cancel the 

antenna current. 

 

 To overcome the trade-off between radiation efficiency and small gap spacing, we 

have developed a new "arch-dipole antenna". The two arms of a dipole antenna are 

shorted by a tall, narrow arch (Fig. 2a). It has been verified by FDTD simulation that the 

arch-dipole antenna has two main modes depending on the current distribution and both 

modes show good ability of light energy confinement at the antenna gap (Fig. 2b). Since, 

the current distribution in the arch structure plays an important for the arch antenna 

mode, the antenna can be optimized by adjusting the arch height (Fig. 3). Our simulations 

show that a field enhancement of 4.6×10
10

 is achievable with gold arch-dipole antenna 

with 1 nm gap, and 3.4×10
11

 with silver antenna (Fig. 4). The antenna gap (inside the 

arch) can now be defined by the thickness of a sacrificial dielectric layer using spacer 

lithography (Fig. 5a). The dielectric layer thickness is again controlled by ALD to sub-

nm accuracy. The SEM image in Fig. 5b shows the fabricated optical antennas aligned on 

5 nm wide fins. Fig. 6a shows that the reflection spectra of the antenna arrays. The  

resonance dip exhibits a red shift with increasing antenna length, as expected. Fig. 6b 

shows the SERS spectra from antenna arrays with various lengths. The strongest Raman 

signals are observed from 210 nm and 240 nm long antenna arrays, which have 

resonances near the excitation and Stokes shifted wavelength, respectively. The measured 

enhancement factor from the strongest SERS signal is 1.7x10
10

. The strong dependence 

on the excitation polarization confirms that the SERS signals are from the optical 

antennas (Fig. 6c). Since the proposed new antennas can be made by deep UV 

lithography, uniform SERS substrates with sub-5nm gaps can be mass produced in 

existing Si CMOS foundries (Fig. 7).    
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Figure 1. (a) The schematic picture of patch antenna array. (b) SEM image of fabricated patch antenna. (c) 

BPE SERS measurement (10 sec integration).  

 

 

 

 
(a) (b) 

Figure 2. (a) The schematic picture of arch-dipole antenna array. (b) Field enhancement simulation 

comparison of arch-dipole antenna and dipole antenna. Red and blue lines show the field enhancement of 

arch-dipole antenna and dipole antenna, respectively. The arch-dipole antenna clearly shows two main 

modes depending on the current direction at the arch structure. 

 



 

  
(a) (b) 

Figure 3. (a) Field enhancement simulation of arch-dipole antennas with various arch heights. (b) Quality 

factor plot as a function of arch height. Low radiation Q and impedance matching condition can be 

achieved with 5 nm gap spacing.  

 

 

  
(a) (b) 

Figure 4. (a) Field enhancement comparison between patch antenna and arch-dipole antenna. Field 

enhancement of arch-dipole keeps increasing with antenna gap scaling down. (b) Field enhancement 

comparison of 1 nm gap gold patch antenna, gold arch-dipole antenna and silver arch-dipole antennas.  

(FDTD simulations) 

 

 

  
(a) (b) 

 

Figure 5. (a) Fabrication process of arch-dipole antenna array. (b) SEM images of optical antenna array 

aligned on 5 nm fins. Inset shows perspective view of a single antenna.   

 



   
(a) (b) (c) 

Figure 6. (a) Reflectance measurement of fabricated optical antenna arrays with antenna length variations. 

(b) Measured BPE SERS spectra. (c) SERS comparison with two different excitation polarizations. 

 
 

  

(a) (b) 
Figure 7. (a) Developed wafer-scale fabrication process using deep-UV (DUV) photo lithography. (b) SEM 

picture of the large area optical antenna array fabricated on 6 inch wafer. 

 




